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1.0 Introduction 
Subroutines or function calls 

have been a normal part of the 
programming model for standard ISAs 
for a very long time.  They have been 
around long enough, in fact, that their 
original meaning has been somewhat 
blurred and forgotten. 

Function calls are a mechanism 
for virtualizing the instruction set of a 
processor.  Each new, more complicated, 
instruction is simply represented by a 
series of loads to specific input registers, 
a jump-and-link and a series of calls to 
restore registers or read output.  A 
function is nothing more than a very 
complicated machine instruction. 

The problem in introducing such 
a classic function call mechanism to 
FLEET centers, ironically, around the 
lack of centralization in FLEET.  In a 
standard ISA, the state of the processor 
can be virtualized simply by saving and 
restoring the register file.  A FLEET 
however has far more, far less structured 
state.  State in FLEET exists in each 
SHIP and even in the switch fabric itself. 

Back in Fall of 2005, I produced 
a document for homework #2 of the 
CS294-FLEET class which dealt both 
with function call and the similarity of 
WaveScalar to FLEET.  In this 
document I will re-present those ideas, 
and attempt to update them in 
accordance both with the newer designs 
for FLEET, and more recent thinking. 

2.0 Limited Tags & 
Backing Store 

There are two basic possibilities 
for virtualization of a FLEET, and thus 
for implementing function calls.  The 
first, called “stop & swap” relies on a 
global freeze of all values in the entire 
FLEET, which is then written to main 
memory as a block.  This mechanism 
can also, thankfully, be used to 
implement threads, but it’s use for 
function calls somewhat complicates the 
call standard as the arguments and return 
values must either be in memory, or 
perhaps the record store is treated 
specially. 

The second mechanism is 
described in [1] with more data in [2, 3] 
not to mention [4-6].  I refer to this 
mechanism as “tagged” as instructions 
from various threads or functions are 
given an identity tag, and thus allowed to 
execute concurrently, but no instructions 
with one tag may interact with 
instructions or data with a different tag. 

The fundamental computation 
structure behind function calls is a stack, 
but the implementations realized with 
“tagged” and “stop & swap” are both 
costly. By combining them we can make 
use of the strengths of each while hiding 
the weaknesses. 

The basic premise is simple: 
there is a variant of the “load code bag” 
instruction which marks the incoming 
code bag as belonging to a new function, 
one which deserves its own virtual 
FLEET state.  The instruction fetch 



SHIP is free to assign any tag to this 
code bag, meaning there could be 
anywhere from a minimum of two tags 
up to hundreds perhaps. 

SHIPs and the switch fabric must 
be extended to handle tags, as in 
Monsoon and WaveScalar.  However, if 
only two tags are used, there is an added 
bonus: we can easily limit the 
complexity of these additions, and in this 
extreme case only a single bit of tag is 
needed. 

Special moves or a SHIP may 
also be provided to change the tag of a 
piece of data, thus allowing it to be 
passed from one virtual FLEET to 
another.  This mechanism can be used 
for function arguments and return 
values, or even for IPC if the tags 
represent different threads, rather than 
different stack frames.  In truth, the use 
of 1st class instructions would unify the 
special “load code bag with new tag” 
instruction and the ability to change tags 
on a piece of data. 

In order to cope with the limited 
tag-space, a FLEET must be able to clear 
all moves and data with the old tag out 
to some backing store.  This can be done 
with extensions to the edges of the 
switch fabrics.  Moves with the old tag 
are removed from the various queues 
and written to memory.  Data with the 
old tag are handled similarly.  The major 
downside to this is the need to engineer 
SHIPs not to store data internally, 
otherwise it must be specially handled, 
and the need to bound the latency on the 
various switch fabrics so that at some 
point it is possible to be sure that all old 
data and moves have been swapped out. 

While at first glance this is “stop 
& swap” with a bunch of needless 
complicated tags, the benefit is that now 
the swap operation can take place in the 
background, and the stop becomes 

merely a pause.  In fact perhaps 3 or 4 
tags could be introduced such that the 
backing store could be transparently 
spilled and filled to SRAM and then 
DRAM similar to the register stack 
implemented by the IA64 architecture. 

 

3.0 Coroutines 
Section 2.0 Limited Tags & 

Backing Store outlines a proposal for 
using tags and a transparent backing 
store to implement the virtualization of a 
FLEET for the purpose on function calls.  
And yet, that same section also hints at 
the possibility of expanding the same 
mechanism to implement coarse grained 
multi-processing or multi-threading in 
FLEET. 

Namely, by allowing tags to be 
assigned to functions in such a way that 
a function has access to both it’s 
predecessor and successor we can easily 
allow functions to setup arguments and 
read return values.  However, by 
providing a second mechanism for the 
assignment of tags, perhaps through 
some simple data hiding in an OS layer, 
we can use tags to implement multi-
processing. 

In contrast to function calls, 
threads or processes simply have no 
access to each other’s tag-space.  This 
means that each process or thread is 
completely independent of one another. 

Of course relaxing this barrier so 
that an OS layer could access the tag-
space of another process or thread would 
allow a powerful form of run-time IPC. 

In general, this mechanism 
begins to suggest “co-routines” whereby 
the distinction between process level and 
function level virtualization is blurred, 
sometimes to an extreme.  In fact the co-
routine model is also well-suited to a 
FLEET with high concurrency, as co-



routines are an inherently concurrent 
programming model. 

The problem with such a co-
routine model is that it raises the same 
issues of traditional dataflow 
architectures, namely that the scheduling 
problem is now unbelievably hard, and 
the memory requirements for 
virtualization may grow to be very large.  
Of course the co-routine programming 
model also provides a solution for this, 
namely that parallelism is left essentially 
to the programmer. 

This section, unfortunately, 
contains no true conclusions as the 
matter deserves more time and thought, 
not to mention some collaborative 
exploration. 

 

4.0 Flotillas 
As Intel rolls out dual and quad 

code microprocessors, and the RAMP 
project begins to investigate 100+ 
processor systems, the issue of multi-
processor FLEET design is one begging 
for discussion.  Because FLEET is 
designed to be highly concurrent, with 
very independent SHIPs, it is possible 
that FLEETs may simply grow very 
large, and through the use of the 
virtualization mechanisms in section 2.0 
Limited Tags & Backing Store or 3.0 
Coroutines, be capable of running 
multiple functions and processes at one 
time. 

However, the use of tags to 
separate FLEET contexts also suggests 
the resurrection of the term “flotilla” 
from Fall 2005, to describe a collection 
of FLEETs. 

Under the model outlined in 
above sections a Flotilla might consist of 
several FLEETs operating in 
cooperation, with each FLEET taking 
responsibility for one or more tag-spaces 

or contexts.  This mechanism would 
mesh well with the use of co-routines as 
two co-routines could now be executed 
in parallel on two FLEETs and the tag-
changing-moves between them could 
simply involve the transport of data 
through some meta-switch-fabric. 

Furthermore, this kind of 
organization could allow a high degree 
of flexibility in scheduling, a program 
with many co-routines could be executed 
using spatial or temporal virtualization, 
with the various routines on multiple 
FLEETs at one time, or swapping in and 
out of one FLEET. 

Even better, a Flotilla with this 
capability could scale the number of 
threads being executed, as the number of 
function calls or coroutines changes, 
thereby trading thread, instruction and 
function level parallelism all through the 
same mechanism. 

Again, this section offers few 
conclusions beyond the suggestion and 
minimal exploration of an idea. 

5.0 Conclusion 
In general this paper offers few 

solutions.  Section 2.0 Limited Tags & 
Backing Store provides a rehash and 
update of an old proposal for the 
handling of function calls through a 
mechanism cobbled together from the 
IA64 transparent backing store and tags 
[1] or WaveNumbers [4-6]. 

Sections 3.0 Coroutines and 4.0 
Flotillas provide some thoughts on the 
possible expansion of this tag and swap 
mechanism to encompass a possible 
programming model, coroutines, and a 
multiprocessing model, flotillas. 

In the future, I hope the through 
discussion and perhaps several revisions 
of this document some additional 
conclusions and hard research data may 
be produced. 
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