Function Calls for FLEET

Greg Gibeling
Wednesday October 4™, 2006
GDGO2 — Function Calls for FLEET

1.0 Introduction

Subroutines or function calls
have been a normal part of the
programming model for standard ISAs
for a very long time. They have been
around long enough, in fact, that their
original meaning has been somewhat
blurred and forgotten.

Function calls are a mechanism
for virtualizing the instruction set of a
processor. Each new, more complicated,
instruction is simply represented by a
series of loads to specific input registers,
a jump-and-link and a series of calls to
restore registers or read output. A
function is nothing more than a very
complicated machine instruction.

The problem in introducing such
a classic function call mechanism to
FLEET centers, ironically, around the
lack of centralization in FLEET. In a
standard ISA, the state of the processor
can be virtualized simply by saving and
restoring the register file. A FLEET
however has far more, far less structured
state. State in FLEET exists in each
SHIP and even in the switch fabric itself.

Back in Fall of 2005, I produced
a document for homework #2 of the
CS294-FLEET class which dealt both
with function call and the similarity of
WaveScalar to FLEET. In this
document I will re-present those ideas,
and attempt to wupdate them in
accordance both with the newer designs
for FLEET, and more recent thinking.

2.0 Limited Tags &
Backing Store

There are two basic possibilities
for virtualization of a FLEET, and thus
for implementing function calls. The
first, called “stop & swap” relies on a
global freeze of all values in the entire
FLEET, which is then written to main
memory as a block. This mechanism
can also, thankfully, be wused to
implement threads, but it’s use for
function calls somewhat complicates the
call standard as the arguments and return
values must either be in memory, or
perhaps the record store is treated
specially.

The second mechanism is
described in [1] with more data in [2, 3]
not to mention [4-6]. I refer to this
mechanism as “tagged” as instructions
from various threads or functions are
given an identity tag, and thus allowed to
execute concurrently, but no instructions
with one tag may interact with
instructions or data with a different tag.

The fundamental computation
structure behind function calls is a stack,
but the implementations realized with
“tagged” and “stop & swap” are both
costly. By combining them we can make
use of the strengths of each while hiding
the weaknesses.

The basic premise is simple:
there is a variant of the “load code bag”
instruction which marks the incoming
code bag as belonging to a new function,
one which deserves its own virtual
FLEET state. The instruction fetch



SHIP is free to assign any tag to this
code bag, meaning there could be
anywhere from a minimum of two tags
up to hundreds perhaps.

SHIPs and the switch fabric must
be extended to handle tags, as in
Monsoon and WaveScalar. However, if
only two tags are used, there is an added
bonus: we can easily limit the
complexity of these additions, and in this
extreme case only a single bit of tag is
needed.

Special moves or a SHIP may
also be provided to change the tag of a
piece of data, thus allowing it to be
passed from one virtual FLEET to
another. This mechanism can be used
for function arguments and return
values, or even for IPC if the tags
represent different threads, rather than
different stack frames. In truth, the use
of 1* class instructions would unify the
special “load code bag with new tag”
instruction and the ability to change tags
on a piece of data.

In order to cope with the limited
tag-space, a FLEET must be able to clear
all moves and data with the old tag out
to some backing store. This can be done
with extensions to the edges of the
switch fabrics. Moves with the old tag
are removed from the various queues
and written to memory. Data with the
old tag are handled similarly. The major
downside to this is the need to engineer
SHIPs not to store data internally,
otherwise it must be specially handled,
and the need to bound the latency on the
various switch fabrics so that at some
point it is possible to be sure that all old
data and moves have been swapped out.

While at first glance this is “stop
& swap” with a bunch of needless
complicated tags, the benefit is that now
the swap operation can take place in the
background, and the stop becomes

merely a pause. In fact perhaps 3 or 4
tags could be introduced such that the
backing store could be transparently
spilled and filled to SRAM and then
DRAM similar to the register stack
implemented by the IA64 architecture.

3.0 Coroutines

Section 2.0 Limited Tags &
Backing Store outlines a proposal for
using tags and a transparent backing
store to implement the virtualization of a
FLEET for the purpose on function calls.
And yet, that same section also hints at
the possibility of expanding the same
mechanism to implement coarse grained
multi-processing or multi-threading in
FLEET.

Namely, by allowing tags to be
assigned to functions in such a way that
a function has access to both it’s
predecessor and successor we can easily
allow functions to setup arguments and
read return values. However, by
providing a second mechanism for the
assignment of tags, perhaps through
some simple data hiding in an OS layer,
we can use tags to implement multi-
processing.

In contrast to function calls,
threads or processes simply have no
access to each other’s tag-space. This
means that each process or thread is
completely independent of one another.

Of course relaxing this barrier so
that an OS layer could access the tag-
space of another process or thread would
allow a powerful form of run-time IPC.

In general, this mechanism
begins to suggest “co-routines” whereby
the distinction between process level and
function level virtualization is blurred,
sometimes to an extreme. In fact the co-
routine model is also well-suited to a
FLEET with high concurrency, as co-



routines are an inherently concurrent
programming model.

The problem with such a co-
routine model is that it raises the same
issues of traditional dataflow
architectures, namely that the scheduling
problem is now unbelievably hard, and
the memory requirements for
virtualization may grow to be very large.
Of course the co-routine programming
model also provides a solution for this,
namely that parallelism is left essentially
to the programmer.

This  section, unfortunately,
contains no true conclusions as the
matter deserves more time and thought,
not to mention some collaborative
exploration.

4.0 Flotillas

As Intel rolls out dual and quad
code microprocessors, and the RAMP
project begins to investigate 100+
processor systems, the issue of multi-
processor FLEET design is one begging
for discussion.  Because FLEET is
designed to be highly concurrent, with
very independent SHIPs, it is possible
that FLEETs may simply grow very
large, and through the use of the
virtualization mechanisms in section 2.0
Limited Tags & Backing Store or 3.0
Coroutines, be capable of running
multiple functions and processes at one
time.

However, the use of tags to
separate FLEET contexts also suggests
the resurrection of the term “flotilla”
from Fall 2005, to describe a collection
of FLEETS.

Under the model outlined in
above sections a Flotilla might consist of
several FLEETsSs operating in
cooperation, with each FLEET taking
responsibility for one or more tag-spaces

or contexts. This mechanism would
mesh well with the use of co-routines as
two co-routines could now be executed
in parallel on two FLEETSs and the tag-
changing-moves between them could
simply involve the transport of data
through some meta-switch-fabric.

Furthermore, this kind of
organization could allow a high degree
of flexibility in scheduling, a program
with many co-routines could be executed
using spatial or temporal virtualization,
with the various routines on multiple
FLEETsS at one time, or swapping in and
out of one FLEET.

Even better, a Flotilla with this
capability could scale the number of
threads being executed, as the number of
function calls or coroutines changes,
thereby trading thread, instruction and
function level parallelism all through the
same mechanism.

Again, this section offers few
conclusions beyond the suggestion and
minimal exploration of an idea.

5.0 Conclusion

In general this paper offers few
solutions. Section 2.0 Limited Tags &
Backing Store provides a rehash and
update of an old proposal for the
handling of function calls through a
mechanism cobbled together from the
[IA64 transparent backing store and tags
[1] or WaveNumbers [4-6].

Sections 3.0 Coroutines and 4.0
Flotillas provide some thoughts on the
possible expansion of this tag and swap
mechanism to encompass a possible
programming model, coroutines, and a
multiprocessing model, flotillas.

In the future, I hope the through
discussion and perhaps several revisions
of this document some additional
conclusions and hard research data may
be produced.



6.0 References

1. Papadopoulos, G.M. and D.E.
Culler. Monsoon: an explicit
token-store  architecture.  in
Seattle, WA. 1990.

2. Culler, D.E. and Arvind.

Resource requirements of
dataflow programs. in Honolulu,
HI. 1988.

3. Culler, D.E., K.E. Schauser, and
T. von Eicken. Two fundamental
limits on dataflow
multiprocessing. in Architectures
and Compilation Techniques for
Fine and Medium  Grain
Parallelism. IFIP WG10.3
Working Conference. Orlando,

FL. 1993.

4. Swanson, S., et al., Dataflow:
The Road Less Complex. 2003. p.
13.

5. Swanson, S., et al., Threads on

the Cheap: Multithreaded
Execution in a WaveCache
Processor. 2004. p. 7.

6. Swanson, S., et al. WaveScalar.
in 36th International Symposium
on Microarchitecture. San

Diego, CA. 2003.



