Assassination
Killing Pipelines 1! Class Style

Greg Gibeling
Tuesday October 31*, 2006
GDGO06 — Assassination

1.0 Introduction

The largest current difficulty
impeding progress on the FLEET
specification is the current general
silence on the setup, use and teardown of
pipelined interfaces. The ZOMA move
instructions have taken care of most of
these difficulties, and in conjunction
with well designed SHIPs, including
proper token/pipeline interfaces, allow
us to pipeline many large designs. The
one qualification on this success is that
nothing in the current specification, or in
any imaginable SHIP specifications can
cope with the case where more than a
single data item is in flight per-pipeline
stage.

Notice that this document refers
often to “valves” a concept proposed in
AMOS.

2.0 Proposal

Many systems exhibit a similar
behavior with respect to having an
unknown number of data fragments
(packets, datagrams, words, etc.) in
flight and still requiring synchronous
termination as the result of an arbitrary
condition.

I use the term arbitrary condition
here, to mean that the programmer, not
the system architect or SHIP designer,
has complete freedom over when a
pipeline is torn down. In reality many
pipelines will have a fixed count or some
simple condition, but I suggest that

attempting to build these termination
conditions into SHIPs or even valves,
may be a serious mistake.

In this design the output valve
would keep a count of the number of
outstanding tokens or data items at one
time. Upon receipt of a “start,” which
might be encoded in any number of
ways but must include the number of
data items which can be in flight
concurrently, the output valve should
produce as many data items as specified
by the “start” and increment it’s “in
flight” counter to that value. Upon
receipt of a token, the counter could be
decremented. Whenever the count is
less than it’s initial value another data
item may be sent. Notice that so far, this
is a fairly simple credit-based flow
control scheme, wherein the output valve
keeps track of the credits, and there are
two standing moves to send data one
way, and tokens back.

Tear down could be
accomplished by means of the delivery
of an ‘““assassination request,” note again
that this may be encoded in many ways
but must include the address of the input
valve, to the output valve. Upon receipt
of an assassination request (or hit) the
output valve would tear down the data
half of the pipeline and then wait until
it’s in-flight counter once again reaches
the initial value, meaning all sent data
has been acknowledged, and then output
a “poison pill” to the input valve’s token
output, by generating a first class move
zero to the input valve’s token. This

poison would in turn cause a token to be
sent from the input valve to an arbitrary
destination, specified in the poison
instruction and taken from the
assassination request, which will
indicate that both valves have quiesced,
and that all of the standing moves have
been killed.

3.0 Conclusion

While this proposal requires the
introduction of 1% class moves, and is
still fairly rough it does have the nice
benefits of integrating with valves from
AMOS, and providing a very general and
powerful mechanism for shutting down
pipelined programs upon arbitrary
conditions.

Furthermore, one could imagine
actually subsuming standing moves into
the valves themselves through the use of
first class instructions, allowing each
valve to keep a register of the address to
deliver its output to. This further
simplifies standing move instructions
from valves, as the switch fabric no
longer needs to implement them, and
additional means that the assassination
request no longer needs to include the
address of the input valve. This in turn
implies that the global shutdown of
pipelines, e.g. for reset purposes, could
be simplified to sending assassination
requests to all output valves, assuming
output valves are designed to ignore a
request while they are not operating.

4.0 A Word of Warning

I have voiced this opinion
carefully and quietly of late, but with the
addition of valves, and other such
features 1 believe that we need to
become more mindful of our own
reasoning about the switch fabric. Much
of our work on pipelined SHIPs and
ZOMA moves is predicated on the

theory that switch fabric traversals will
be costly and thus should be avoided as
much as possible.

This theory is in turn predicated
on the existence of a very large number
of SHIPs per FLEET, which is in turn
predicated on our need to use up silicon
area. As always alternate designs, such
as smaller FLEETs building up to
Flottillas ~ will demand different
tradeoffs. What is more worrisome is
that different assumptions may lead to
different tradeoffs, and that our
assumptions are in fact self fulfilling.

My primary concern, and a good
example of this, is the assumption that
switch fabric traversal will be expensive.
In order to mitigate this perceived cost,
we have no working design to provide
hard data, we are adding machinery such
as ZOMA moves and valves, which will
increase the cost of switch fabric
traversals. Similarly, by assuming the
existence of some complex SHIPs, e.g.
memory with a stride, we are ensuring
the need for other complex SHIPs to
produce a balanced design.

This style of design is forcing us
into a CISC mentality, which ultimately
leads to the design of e.g. a polynomial
multiply SHIP. I suggest that we need to
be mindful of this as a serious design
problem, and take advantage of the
tenets of RISC design, a notably
Berkeley product.

